Skip to main content

Advertisement

Log in

Long-term Geochemical Evolution of Lithogenic Versus Anthropogenic Distribution of Macro and Trace Elements in Household Attic Dust

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Attic dusts were examined as historical archives of anthropogenic emissions, with the goal of elucidating the enrichment pathways associated with hydrothermal exploitation of Cu, Pb, and Zn minerals in the Bregalnica River basin in the eastern part of the Republic of Macedonia. Dust samples were collected from 84 settlements. Atomic emission spectrometry and mass spectrometry with inductively coupled plasma were applied as analytical techniques for the determination of 69 element contents. Multivariate analysis was applied for the extraction of dominant geochemical markers. The lithogenic distribution was simplified to six dominant geochemical markers: F1: Ga-Nb–Ta–Y–(La–Gd)–(Eu–Lu); F2: Be–Cr–Li–Mg–Ni; F3: Ag–Bi–Cd–Cu–In–Mn–Pb–Sb–Te–W–Zn; F4: Ba–Cs–Hf–Pd–Rb–Sr–Tl–Zr; F5: As-Co–Ge–V; and F6: К–Na–Sc–Ti. The anthropogenic effects on the air pollution were marked by a dominance of F3 and secondary dominance of F5. The fifth factor also was determined as a lithogenic marker for the occurrence of the very old Rifeous shales. The first factor also presents a very unique association that despite the heterogeneity relays on natural phenomena of tracking the deposition in areas of Proterosoic gneisses; related to the distribution of fine particles was associated with carbonate–silicate volcanic rocks. Intensive poly-metallic dust depositions were recorded only in the surroundings of localities where the hydrothermal extractions are implemented. Long-term deposition can be considered as pollution indexes for these hot spots. This mainly affects the Cd, Pb, and Zn deposition that is as high as 25, 3900, and 3200 mg/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ajmone-Marsan F, Biasioli M, Kralj T, Grčman H, Davidson CM, Hursthouse AS et al (2008) Metals in particle-size fractions of the soils of five European cities. Environ Pollut 152(1):73–81

    Article  CAS  Google Scholar 

  • Alijagić J (2008) Distribution of chemical elements in an old metallurgic area, Zenica (Central Bosnia) (MSc thesis) Faculty of Science, Masaryk University, Brno

  • Alijagić J, Šajn R (2011) Distribution of chemical elements in an old metallurgical area, Zenica (Bosnia and Herzegovina). Geoderma 162(1):71–85

    Google Scholar 

  • Angelovska S, Stafilov T, Šajn R, Balabanova B (2016) Geogenic and anthropogenic moss responsiveness to element distribution around a Pb–Zn mine, Toranica, Republic of Macedonia. Arch Environ Contam Toxicol 70(3):487–505

    Article  CAS  Google Scholar 

  • Arsovski M (1997) Tectonics of Macedonia. Faculty of Mining and Geology, Štip, pp 1–306

    Google Scholar 

  • Bačeva K, Stafilov T, Šajn R (2012) Monitoring of air pollution with heavy metals in the vicinity of ferronickel smelter plant by deposited dust. Maced J Ecol Environ 1(1–2):17–24

    Google Scholar 

  • Balabanova B, Stafilov T, Bačeva K, Šajn R (2010) Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radovıš, Republic of Macedonia. J Environ Sci Health A 45:1504–1518

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2011) Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant. Arch Environ Contam Toxicol 61(2):173–184

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2012) Characterisation of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to biomonitoring of air pollution in the vicinity of copper mine. Int J Environ Res 6(3):779–794

    CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Bačeva K (2014) Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. Int J Environ Sci Technol 11:517–528

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R (2015) Lithological distribution of rare earth elements in automorphic and alluvial soils in the Bregalnica river basin. Maced J Chem Chem Eng 34(1):201–212

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Šajn R, Tănăselia (2016) Geochemical hunting of lithogenic and anthropogenic impacts on polymetallic distribution (Bregalnica river basin, Republic of Macedonia). J Environ Sci Health A 51(13):1180–1194

    Article  CAS  Google Scholar 

  • Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Ostrovnaya TM (2015) Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22(20):6077–16097

    Article  Google Scholar 

  • Beelen R, Hoek G, Pebesma E, Vienneau D, de Hoogh K, Briggs DJ (2009) Mapping of background air pollution at a fine spatial scale across the European Union. Sci Total Environ 407(6):1852–1867

    Article  CAS  Google Scholar 

  • Bourennane H, Douay F, Sterckeman T, Villanneau E, Ciesielski H, King D, Baize D (2010) Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 157(3):165–174

    Article  CAS  Google Scholar 

  • Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26(2):211–252

    Google Scholar 

  • Cizdziel JV, Hodge VF (2000) Attics as archives for house infiltrating pollutants: trace elements and pesticides in attic dust and soil from southern Nevada and Utah. Microchem J 64(1):85–92

    Article  CAS  Google Scholar 

  • Cizdziell JV, Hodge VF, Faller SH (1998) Plutonium anomalies in attic dust and soils at locations surrounding the Nevada test site. Chemosphere 37(6):1157–1168

    Article  Google Scholar 

  • Coronas MV, Bavaresco J, Rocha JAV, Geller AM, Caramão EB, Rodrigues MLK, Vargas VMF (2013) Attic dust assessment near a wood treatment plant: past air pollution and potential exposure. Ecotoxicol Environ Saf 95:153–160

    Article  CAS  Google Scholar 

  • Davis JJ, Gulson BL (2005) Ceiling (attic) dust: a “museum” of contamination and potential hazard. Environ Res 99(2):177–194

    Article  CAS  Google Scholar 

  • De Miguel E, Llamas JF, Chacon E, Mazadiego LF (1999) Sources and pathways of trace elements in urban environments: a multi-elemental qualitative approach. Sci Total Environ 235(1):355–357

    Article  Google Scholar 

  • Dumurdzanov N, Serafimovski T, Burchfiel BC (2004) Evolution of the Neogene–Pleistocene basins of Macedonia. Geol Soc Am Bull 1:1–20

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JJN (1999) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic press, San Diego

    Google Scholar 

  • Fordyce FM, Brown SE, Ander EL, Rawlins BG, O’Donnell KE, Lister TR et al (2005) GSUE: urban geochemical mapping in Great Britain. Geochem Explor Environ A 5(4):325–336

    Article  CAS  Google Scholar 

  • Goodarzi F (2006) Assessment of elemental content of feed coal, combustion residues, and stack emitted materials for a Canadian pulverized coal fired power plant, and their possible environmental effect. Int J Coal Geol 65:17–25

    Article  CAS  Google Scholar 

  • Gosar M, Teršič T (2012) Environmental geochemistry studies in the area of Idrija mercury mine, Slovenia. Environ Geochem Health 34(1):27–41

    Article  CAS  Google Scholar 

  • Gosar M, Šajn R, Biester H (2006) Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci Total Environ 369(1):150–162

    Article  CAS  Google Scholar 

  • Hensley AR, Scott A, Rosenfeld PE, Clark JJJ (2007) Attic dust and human blood samples collected near a former wood treatment facility. Environ Res 105(2):194–199

    Article  CAS  Google Scholar 

  • Ilacqua V, Freeman NC, Fagliano J, Lioy PJ (2003) The historical record of air pollution as defined by attic dust. Atmos Environ 37(17):2379–2389

    Article  CAS  Google Scholar 

  • ISO 14869–1 (2001) Soil quality: Dissolution for the determination of total element content—Part 1: dissolution with hydrofluoric and perchloric acids. International Organization for Standardization, Geneva

    Google Scholar 

  • Jemec Auflič M, Šajn R (2007) Geochemical research of soil and attic dust in Litija area, Slovenia. Geologija 50:497–505

    Article  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic–plutonic parity and the differentiation of the continental crust. Nature 523(7560):301–307

    Article  CAS  Google Scholar 

  • Lazarevski A (1993) Climate in Macedonia. Kultura, Skopje

    Google Scholar 

  • Lioy PJ, Freeman NC, Millette JR (2002) Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Perspect 110(10):969

    Article  CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14(5):372–378

    Article  CAS  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC et al (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1(3):189–195

    Article  CAS  Google Scholar 

  • Pavilonis BT, Lioy PJ, Guazzetti S, Bostick BC, Donna F, Peli M et al (2015) Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. J Expo Sci Environ Epidemiol 25(4):443–450

    Article  CAS  Google Scholar 

  • Popov SI, Stafilov T, Šajn R, Tănăselia C, Bačeva K (2014) Applying of factor analyses for determination of trace elements distribution in water from river Vardar and its tributaries, Macedonia/Greece. Sci World J 2014:1–11

    Article  Google Scholar 

  • Rakićević T, Dumurdzanov N, Petkovski M (1968) Basic geological map of SFRJ, sheet Štip, M 1:100,000 (map & interpreter). Federal Geological Survey, Belgrade

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184(1):123–138

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227:9–17

    Article  Google Scholar 

  • Šajn R (2000) Influence of lithology and antropogenic activity on distribution of chemical elements in dweling dust, Slovenia. Geologija 43:85–101

    Article  Google Scholar 

  • Šajn R (2001) Geochemical research of soil and attic dust in Celje area (Slovenia). Geologija 44:351–362

    Article  Google Scholar 

  • Šajn R (2002) Influence of mining and metallurgy on chemical composition of soil and attic dust in Meža valley, Slovenia. Geologija 45:547–552

    Article  Google Scholar 

  • Šajn R (2003) Distribution of chemical elements in attic dust and soil as reflection of lithology and anthropogenic influence in Slovenia. J de Phys 107:1173–1176

    Google Scholar 

  • Šajn R (2005) Using attic dust and soil for the separation of anthropogenicand geogenic elemental distributions in an old metallurgic area (Celje, Slovenia). Geochemistry 5:59–67

    Google Scholar 

  • Šajn R (2006) Factor analysis of soil and attic-dust to separatemining and metallurgy influence, Meza valley, Slovenia. Math Geol 38:735–746

    Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W et al (2005) FOREGS geochemical atlas of Europe. Part 1: background information, methodology and maps. (http://weppi.gtk.fi/publ/foregsatlas)

  • Serafimovski T, Tasev G (2003) The Zletovo subvolcanic hydrothermal Pb–Zn mineral deposit in the Republic of Macedonia. In: Geodynamics and ore deposit evolution of the Alpine–Balkan–Carpathian–Dinaride Province. Final GEODE-ABCD Workshop. Programme and Abstracts. Seggauberg, Austria, pp 22–24

  • Stafilov T (2014) Environmental pollution with heavy metals in the Republic of Macedonia. Contrib Sect Nat Math Biotech Sci MASA 35(2):81–119

    Google Scholar 

  • Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2010) Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J Hazard Mater 175(1):896–914

    Article  CAS  Google Scholar 

  • Stafilov T, Šajn R, Balabanova B, Bačeva K (2012) Distribution of heavy metals in attic and deposited dust in the vicinity of copper ore processing and ferronickel smelter plants in the Republic of Macedonia. Dust Sources, Environmental Concerns and Control. Nova Science Publishers, Inc., New York, pp 57–98

    Google Scholar 

  • State Statistical Office of Republic of Macedonia (2015) Environmental statistics, Skopje

  • Tye AM, Hodgkinson ES, Rawlins BG (2006) Microscopic and chemical studies of metal particulates in tree bark and attic dust: evidence for historical atmospheric smelter emissions, Humberside, UK. J Environ Monit 8(9):904–912

    Article  CAS  Google Scholar 

  • Völgyesi P, Jordan G, Zacháry D, Szabó C, Bartha A, Matschullat J (2014) Attic dust reflects long-term airborne contamination of an industrial area: a case study from Ajka, Hungary. Appl Geochem 46:19–29

    Article  Google Scholar 

  • Vrhovnik P, Smuc NR, Dolenec T, Serafimovski T, Dolenec M (2013) Impact of Pb–Zn mining activity on surficial sediments of Lake Kalimanci (FYR Macedonia). Turk J Earth Sci 22(6):996–1009

    Article  CAS  Google Scholar 

  • White WM (2013) Geochemistry. Wiley, New York

    Google Scholar 

  • Wong CS, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142(1):1–16

    Article  CAS  Google Scholar 

  • Žibret G (2008) Determination of historical emission of heavy metals into the atmosphere: celje case study. Environ Geol 56(1):189–196

    Article  Google Scholar 

  • Žibret G, Šajn R (2008) Modelling of atmospheric dispersion of heavy metals in the Celje area, Slovenia. J Geochem Explor 97(1):29–41

    Article  Google Scholar 

  • Žibret G, Šajn R (2010) Hunting for geochemical associations of elements: factor analysis and self-organising maps. Math Geosci 42:681–703

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Core Program, under the support of ANCSI, Project No. PN16.40.02.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trajče Stafilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanova, B., Stafilov, T., Šajn, R. et al. Long-term Geochemical Evolution of Lithogenic Versus Anthropogenic Distribution of Macro and Trace Elements in Household Attic Dust. Arch Environ Contam Toxicol 72, 88–107 (2017). https://doi.org/10.1007/s00244-016-0336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0336-y

Keywords

Navigation